Lafros MaCS: an experimental Scala monitoring and control API

Rob Dickens”
Latterfrosken Software Development Limited,
32 Bradford St, Walsall, West Midlands, UK, WS1 3QA

ABSTRACT

Lafros MaCS is a layer of software designed for use in distributed monitoring and control applications. Written in the
hybrid object-functional and statically-typed Scala language, it is the successor of JMaCS, written in Java, making it also
a descendent of experimental software first developed for the ESR. It will be shown how Scala makes possible full type
safety, together with more elegant programmable-device definitions.

Keywords: software, monitor, control, API, distributed, remote, GUI, Scala, MaCS

1. INTRODUCTION

The Lafros Monitoring and Control System (MaCS) software! is an APl written in the Scala?[1] programming language,
designed to help facilitate the local or remote, interactive and programmatic, monitoring and control of a distributed
target in soft® realtime. It does not provide all these facilities by itself, but rather defines a standard way to plug abstract
devicesinto an abstract system that may be implemented by athird party.

MaCS is essentialy a complete rewrite of an existing Java API, IMaCS2], in Scala. We therefore begin with a brief
review of IMaCS and its programmable devices (PDs), before pointing out some of that API's known weaknesses. This
is then followed by a brief introduction to Scala. After first mentioning some of the details of moving the devel opment
from Java to Scala, and discussing the use of Scala idioms, the two APIs are then compared, in terms of the code
required to define, deploy and program an example PD. Some conclusions about the merits of MaCS and Scala relative
to IMaCS and Java are then drawn.

2. MOTIVATION
2.1 JMaCS

Derived from experimental software[3][4] first developed for the ESR, IMaCS sets out to exploit the full potential of an
all-Java system of distributed objects (as opposed to a heterogeneous one). In particular, such a system is not restricted to
exchanging passive data (such as text or documents), but may exchange Java objects themselves, and in an efficient,
secure and object-oriented® way. Thus, using IMaCsS,

« an instance of a Java class representing a command or PD program can be created and configured in a user
interface (Ul)-client object, and sent to a device interface (DI)-client one, with full propagation of any exception
thrown in the latter; DI clients may also send such objects to each other;

« instances of a Java class representing status samples are created in the DI-client object, and sent to Ul client and
other DI-client ones;

« a Java class representing a monitor or control-panel GUI is named in the DI-client object, for subsequent
instantiation and use in Ul-client ones.

One of IMaCS's central concepts is the PD: a reusable definition of a device, complete with monitor and control-panel
GUIs, command interpreter, and APl (whose implementation may be separate and in hardware). Thus, it is usualy more

*rob.dickens@l afros.com +441922/01922 644 223

http://lafros.com/macs

http://scala-lang.org

See [2] and references therein.

http://jmacs.org

This refers to the remote polymorphism supported by Java's Remote-Method Invocation (RMI) infrastructure — see
[2] and references therein.

[ R U R N

Version 6, created 2009-09-04

Copyright 2009 Latterfrosken Software Development Limited.

This paper was presented at the 14th International EISCAT Workshop, and is made available as an electronic preprint subject to the following conditions:
one print or electronic copy may be made for personal use only; systematic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



convenient to implement a PD, and create a DI-client object from that, rather than implement a DI driver plug-in directly.
In addition to being reusable, in the definition of other PDs aswell as the creation of DIs, PDs are also programmable.

It is therefore desirable to be able to write PD definitions as concisely and with as much type-safety® as possible, and for
them to be convenient to use as components. Those written to the current” IMaCS APl have the following weaknesses in
the above respects:

- the name of each PD is that of its package; however, it is necessary to duplicate the rightmost portion of this
when naming the container class that is required;

« thecontainer classs IConstants, IDriver and IStatus interfaces must extend respective tag interfaces,
which is somewhat verbose;

« aproxy class hasto be defined, but supplies no additional information about the PD'sAPI;

+ the Interpreter and MonitorGui classes, and al program ones are not fully type-safe, being passed
arguments having tag interface types (or type Ob-ject), which must be cast to the appropriate PD ones.

It was with the above in mind that consideration was given to rewriting IMaCS in a new language.
2.2 Scala

It is no longer the case that programs targeting the Java platform must be written in the Java language, and among the
aternatives is Scala. Apart from its being statically-typed® and fully interoperable with Java, the following attributes
were what first made this one appealing:

«  better support for writing components (such as PDs), thanks to a form of multiple implementation inheritance
involving traits;

« tighter and more concise syntax, thanks to itsimplicitly final method-parameters, and type inference;

- support for an aternative style of concurrency (to that based on Java's synchronized blocks), in the form of
actors.

However, Scala soon turned out to have other attractions:

« a novel combination of features in support of writing fully type-safe code: inner-classes, type members,
singleton objects, and the ability to override the type of the self reference;

- extensihility through libraries (rather than adding to the language itself), made possible in large part by the fact
that all values are abjects, and all operators are methods;

«  full support for functional programming and closures: besides methods, functions may be defined as values of
function types,

«  utility also asascripting language®.

3. METHOD
3.1 Development notes
Compilation of Scala source files produces regular Java .class files, that may be packaged as regular .jar files. However,
- theScaalibrary jar fileisrequired in the classpath, for execution?;

- applications require their entry point to be a def main(args: Array[String]) {..}, residingin a
singleton object.

No significant changes were therefore required in order to switch to developing MaCS. Note, however, that specia
measurest will be required when devel oping downl oadable apps, to avoid downloading the entire Scala library as well.

a property of statically-typed languages, enforced by the compiler

version 3.3.1

the types of variables being fixed when they are declared

'Scala' is a contraction of 'scalable language', reflecting the intention that it should be applicable for writing small
programs as well as large ones.

10 including that of the scala compiler or script-runner itself

11 such as 'liberating' any dependent .jar files, as described at http://lafros.com/maven/plugins/proguard

O 03

Version 6, created 2009-09-04

Copyright 2009 Latterfrosken Software Development Limited.

This paper was presented at the 14th International EISCAT Workshop, and is made available as an electronic preprint subject to the following conditions:
one print or electronic copy may be made for personal use only; systematic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



3.2 Useof Scalaidioms

As previously mentioned, it was the part of the IMaCS API to do with ddining PDs, namely the org.jmacs.pd package,
that was most in need of benefiting from being rewritten in Scala, and this indeed turned out to be where most
opportunities to employ Scalaidioms arose.

The design pattern found to be of greatest value here is one which will be called the type-safe singleton'?, where inner
classes referring to abstract type members are exposed via a singleton object. This was employed as follows:

each element of the PD is represented by either an abstract type member or an inner classtrait of one of six
abstract container classes, corresponding to six PD categories (differing according to whether or not status is
produced or constants defined);

each such container class is abstract to the extent of its DriverType type member, and aso possible
ConstantsType and StatusType ONes;

aPD is defined by defining at least a singleton object--conventionally called pd, in a package from which the
PD will take its name--which extends the abstract container class for the desired PD category; since this may
not be abstract, it will be obliged to assign values to that container class's abstract type members;

those values should be Scalatraits defining the PD's driver, constants and status, and constitute the PD'sAPI;

any further classes congtituting the PD's definition (such as its monitor GUI) may then be defined in a fully
type-safe way, by extending the corresponding inner classtrait of the container class, which is now accessible
viathe singleton object, pd.

Note the use of abstract type members rather than type parameters (generics). This was either required in order that the
type could be defined in terms of (i.e. bounded by) one of the inner classes/traits, or preferred in order that it could be
explicitly specified by an assignment, rather than implicitly, depending on the type parameter's position.

package com.lafros.jmacs.pd.cat.antenna.steerable; package com.lafros.macspd.cat.antenna.steerable
import org.jmacs.IDij; import java.io.Serializable

import org.jmacs.pd.Device; object pd extends com.lafros.macs.pd.Pd {
public class Steerable implements java.io.Serializable { type ConstantsType = Constants

public static final long serialVersionUID = 1; type DriverType = Driver
public interface Cmds { type StatusType = Status

String el rait Driver {
String dir = "dir"; = az: Double
} r el: Double
public interface IConstants extends Device.IConstants { ~ dir: (Double, Double)
double minAz();
double rait Status extends Serializable {
double az: Double
double el: Double
double maxE1();
double elVel(); rait Constants extends Serializable {
} azvel: Double
public interface IDriver extends Device.IDriver { elvel: Double
void az{double wvall; minAz: Double
void el{double val); maxAz: Double
void dir{double az, double el); minEl: Double
maxEl: Double
public interface IStatus extends Device.IStatus {
double az();
double el();

public static class Proxy extends Device.Proxy {
r proxyDriver = (IDriver)createProxyDriver(IDriver.class);
(final IDi.IDriver.IClient.IContext context) {
super(context);

public Proxy(final IDi.IDriwver.IClient.IContext context,
final String diName) {
super(context, diName);

public IDriver getProxyDriver() {
return this.proxyDriver;

Fig. 1: Steerable antenna API — JMaCS (left) vs MaCS

12 See the subject/observer case study in [5], where the pattern first appears, but without being given a name.

Version 6, created 2009-09-04

Copyright 2009 Latterfrosken Software Development Limited.

This paper was presented at the 14th International EISCAT Workshop, and is made available as an electronic preprint subject to the following conditions:
one print or electronic copy may be made for personal use only; systematic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



4. RESULTS

4.1 PD ddinition

We now present a PD definition for a steerable antenna (such as the one at the ESR), having only a very minimal API.
Fig. 1 shows the Java code necessary to define the PD's API in the case of IMaCS, next to the Scala code necessary in
the case of MaCS. As can be seen, the weaknesses pointed out earlier have been eliminated in the MaCS case.

package com.lafros.jmacs.pd.cat.antenna.steerable;
import java.io.Serializable;

public class Interpreter implements org.jmacs.pd.IInterpreter {

public Serializable interpretCmd(final Serializable omd,
final Context context,
final boolean control)
throws Exception {
if (control &% omd instanceof String) handler:{
final Steerable.IDriver driver =
(Steerable.IDriver)context.getDriver();
final String amdString = (String)omd;
final String[] tokens = amdString.split(
if (tokens[@].equals(Steerable.(mds.az)) {
final double val = Double.parseDouble(tokens[1]);
driver.az{val);
}
else if (tokens[@].equals(Steerable.Cmds.el)) {

final double val = Double.parseDouble(tokens[1]);

package com.lafros.macspd.cat.antenna.steerable

val dir = *
}
class CmdInterpreter extends pd.CmdInterpreter {
def apply(amd: java.io.Serializable,
control: Boolean,
diName: Option[5tring],
context: Context) = {
val recognised =
if (control) omd
case s: String
val tokens = s.split
tokens(@) match {
case cmds.az =>

context.driver.az = tokens(1).toDouble

driver.el(val);
} case cmds.el =>

true

context.driver.el
true

else if (tokens[@].equals(Steerable.(mds.dir)) {
final double az = Double.parseDouble(tokens[1]);
final double el = Double.parseDouble(tokens[2]); case cmds.dir =>
driver.dir(az, el); context.driver.dir = (tokens(1l).toDouble, tokens(Z).toDouble)
I true
else case _ => false
break handler; I
return null; case
1
throw new org.jmacs.CmdMotRecognisedException(omd); else false
} if (recognised) None
} else throw new com.lafros.macs.CmdNotRecognisedException(cmd)
}
}

Fig. 2: Command interpreter - JMaCS (left) vs MaCS

Fig. 2 shows, side by side as before, the two versions of the command interpreter. The main difference to note here is
that, by extending pd.CmdInterpreter, only the MaCS version is fully type-safe, whereas the IMaCS one is
required to cast the driver (from the tag type to the type defined by the PD). Note a so that the commands are defined in
the same file in the MaCS case, which is not possible in the IMaCS one. This example aso illustrates how Scala's
pattern-matching can provide a cleaner aternative to conditionals.

tokens(1).toDouble

_ =» false

It may be similarly shown how, by extending pd.MonitorGui, only the MaCS version of the monitor GUI is fully
type-safe. Note that full type-safety with respect to the PD's API is not an issue in the case of the control-panel GUI,
since this may not reference the driver directly, but only the commands's.

4.2 PD implementation

In the present case, it is appropriate not to include an implementation of the PD's API as part of the PD definition, so as
not to limit its reusability. To provide one in this case requires a status factory, which once again, by extending
pd.StatusFactory, may only bewritten in afully type-safe way in the MaCS case.

4.3 PD deployment

Fig. 3 shows JMaCS and MaCS versions of the code required to create a DI-client object, given a concrete
implementation of our example PD. Here again, only the MaCS version (bottom) is fully type-safe.

13 However, MaCS still provides the class, pd.ControlsGui, in order that the subclass may itself be called
'ControlsGui', as is required.

Version 6, created 2009-09-04

Copyright 2009 Latterfrosken Software Development Limited.

This paper was presented at the 14th International EISCAT Workshop, and is made available as an electronic preprint subject to the following conditions:
one print or electronic copy may be made for personal use only; systematic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



final String devicePkgname = "com.lafros.jmacs.pd.cat.antenna.steerable”;
final Class driverClass =
com. lafros. jmacs.pd.sims.antenna. steerable. SteerableStatusFactory.class;
final Device.IConstants constants =
new com.lafros.jmacs.pd.sims.antenna.steerable.SteerableConstants(
final Pdi pdi i arget.antenna”, devicePkgname, driverClass, constants);

import
import com.lafros.macspd.sims
val di t.antenna.steerable.pd.createDi("target .antenna"”,
classOf [sims.antenna.steerable. 5tatusFactory
sims.antenna.steerable.constants)
di.register()

Fig. 3: Deployment code - JMaCS (top) vs MaCS

4.4 PD programs

Fig. 4 shows the IMaCS version of an example program for our example PD, having properties that may be configured
S0 as to point the antenna in a sequence of directions.

package com.lafros.jmacs.pd. gs .antenna. steerable;
i com. lafros. jmacs. pd. cat.antenna.steerable.Steerable;
org. jmacs. ISamplingDependent;
org.jmacs.pd.Alert;
org. jmacs.pd.IProgram;
org.jmacs.util.Timer;
c class CommonDwell implements IProgram, ISamplingDependent
static final long serialVersionUID = 1;

public boolean wak inal Alert alert

this.

private final Class deviceClass = Steerable.class; :
return this.i < this

public CommonDwell() {

} public void termina

}

private double[] azs
29, 0, -90, @

};

private double[] els
99, 180, 99, @

public void setSc (final Timer.Params params) {

private long dwell_ms = 30006;

private boolean repeat = true; gehlic corhlely

return th

private transient Steerable.IDriver driver;

private transient Timer timer;
private transient int i;

public void setAzs(final double[] azs) {
this.

}

public String to!
return “uses supplie s, dwell-time";

}

public double[]
return this.el

public wvoid init(final Context context) { p“i‘;ti votd satE nal double[] els) {
3
if (this.azs
this.els
this.azs.
this.els.
this.els.length this.azs.length ||
this.dwell_ms <= @)
throw new RuntimeException(“badly configured!");

public long ge
return th
}

public void

public boolean

ver = (Steerable.IDriver)context.getDriver(); <
return this.repeat;

this.timer ontext.getTimer(); a4
public void = (final boolean b) {

timer.setPeriodMillisCthis.dwell_ms); £his . rep

Fig. 4: Example program - JMaCS version

Version 6, created 2009-09-04

Copyright 2009 Latterfrosken Software Development Limited.

This paper was presented at the 14th International EISCAT Workshop, and is made available as an electronic preprint subject to the following conditions:
one print or electronic copy may be made for personal use only; systematic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



Fig. 5 shows the MaCS version of the same program.

package com.lafros.macspd.progs.antenna.steerable
import macspd.cat.antenna.steerable.pd.Program

@SerialVersionUID(1L)
class CommonDwell extends Program {
eanProperty var azs = Array(9eD, @D, -9@D, @D)
eanProperty var els = Array(9eD, 188D, 9@D, @D)
eanProperty var dwell_ms = 30080L
@BeanProperty var repeat = true

@transient private var i: Int = _

override def toSt "uses supplied az & el arrays, dwell-time"

override def init(context: Context) {

if (azs null ||
els null ||
azs.
els.
els.
dwell_ms <= @)
throw new RuntimeException("badly configured!"

)

context.periodMillis = dwell_ms

}

def complete(context: Context) = {
context.addAlert("test", true)

context.driver.dir = (azs(i), els(i))

i+=1
if (i == azs.length && repeat) i = @
i == azs.length

}

Fig. 5: Example program - MaCS version
Once again, only the latter is fully type-safe, while also being somewhat more concise.
The following should also be noted, with regard to the MaCS version:

« the@BeanProperty annotation tells the compiler to add corresponding Java-style accessor methods, to allow
property configuration using existing Javatools;

+ thereisno terminate (), since an empty implementation is already supplied by the Program trait—the
corresponding IProgram Javainterface in the IMaCS case is not allowed to do this;

« anon-language-related refinement of the APl now means that the program need no longer extend an equivalent
of ISsamplingDependent in order to prevent its associated timer being recornfigured whenever the
parameters controlling status sampling are changed.

5. CONCLUSIONS

The Lafros MaCS software, written in Scala, has been presented, and compared with it predecessor, JMaCS, written in
Java.

It has been shown that PD API definitions are cleaner and more concise, when written to the MaCS API, in Scala, than
when written to the J]MaCS one, in Java.

Furthermore, it has also been shown that the remainder of each PD definition, together with PD implementations, PD
deployment code, and PD programs, may be written in a way that is fully type-safe with respect to the PD's API, in the
MaCS/Scala case, that was not possible in the J]MaCS/Java one.

Version 6, created 2009-09-04

Copyright 2009 Latterfrosken Software Development Limited.

This paper was presented at the 14th International EISCAT Workshop, and is made available as an electronic preprint subject to the following conditions:
one print or electronic copy may be made for personal use only; systematic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



ACKNOWLEDGEMENTS

The author acknowledges the continuing, valuable role of computer scientists (such as Martin Odersky), able to achieve
what is beyond the reach of interdisciplinarians. This work was first presented with the kind assistance of lan McCrea.

REFERENCES

[1] Martin Odersky, Lex Spoon, Bill Venners, Programming in Scala (2008).

[2] Rob Dickens, JMaCS: a Java monitoring and control system, Proc. of SPIE Vol. 7019, 7019W (2008).

[3] Rob Dickens, Secure remote monitoring-and-control for the EISCAT Svalbard Radar: a case study in Java object-
oriented design, 9th International EISCAT Workshop talk (Aug 1999).

[4] Rob Dickens, Monitoring and control of the 'radar.eiscat.esr' device, 10th International EISCAT Workshop poster (Jul
2001).

[5] Martin Odersky and Matthias Zenger, Scalable Component Abstractions, OOPSLA (Oct 2005).

Version 6, created 2009-09-04

Copyright 2009 Latterfrosken Software Development Limited.

This paper was presented at the 14th International EISCAT Workshop, and is made available as an electronic preprint subject to the following conditions:
one print or electronic copy may be made for personal use only; systematic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.



	1. INTRODUCTION
	2. motivation
	2.1 JMaCS
	2.2 Scala

	3. Method
	3.1 Development notes
	3.2 Use of Scala idioms

	4. Results
	4.1 PD definition
	4.2 PD implementation
	4.3 PD deployment
	4.4 PD programs

	5. ConclusionS

