

Lafros MaCS: an experimental
Scala monitoring and control API

 Rob Dickens

Introduction
The Lafros MaCS (Monitoring and Control System) API is designed to help facilitate the local or remote,

interactive and programmatic, monitoring and control of a distributed target in soft realtime.

It does not provide all these facilities by itself, but rather defines a standard way to plug abstract devices

into an abstract system that may be implemented by a third party.

It is a complete rewrite of an existing Java API, JMaCS[1], in Scala[2].

JMaCS
JMaCS is derived from experimental software[3][4] first developed for the ESR.

It sets out to exploit the full potential of an all-Java system of distributed objects (as opposed to a

heterogeneous one), which is able to exchange Java objects themselves:

should be more capable than if restricted to exchanging passive data;

should be more efficient than converting data to/from an external format.

Thus, in JMaCS,

an instance of a Java class representing a command or programmable device (PD) program can be

created and configured in a user interface (UI)-client object, and sent to a device interface (DI)-client

one, with full propagation of any exception thrown in the latter; DI clients may also send such objects to

each other;

instances of a Java class representing status samples are created in the DI-client object, and sent to

UI client and other DI-client ones;

a Java class representing a monitor or control-panel GUI is named in the DI-client object, for

subsequent instantiation and use in UI-client ones.

JMaCS API weaknesses
PDs are reusable definitions of devices, complete with monitor and control-panel GUIs, command

interpreter, and API (whose implementation may be separate and in hardware):

it is usually easier to implement one of these rather than a DI-client plug-in directly;

as their name suggests, they are also programmable.

JMaCS PD definitions have the following weaknesses:

the name of each PD is that of its package; however, it is necessary to duplicate the rightmost portion

of this when naming the container class that is required;

the container class's IConstants, IDriver and IStatus interfaces must extend respective tag

interfaces, which is somewhat verbose;

a proxy class has to be defined, but supplies no additional information about the PD's API;

the Interpreter and MonitorGui classes, and all program ones are not fully type-safe, being

passed arguments having tag interface types (or type Object), which must be cast to the appropriate

PD ones.

It was with the above in mind that consideration was given to rewriting JMaCS in a new language.

It is no longer the case that programs targeting the Java platform must be written in the Java language,

and among the alternatives is Scala. Apart from its being statically-typed and fully interoperable with Java,

the following attributes were what first made this one appealing:

better support for writing components (such as PDs), thanks to a form of multiple implementation

inheritance involving traits;

tighter and more concise syntax, thanks to its implicitly final method-parameters, and type inference;

support for an alternative style of concurrency (to that based on Java's synchronized blocks), in the

form of actors.

However, Scala soon turned out to have other attractions:

a novel combination of features in support of writing fully type-safe code: inner-classes, type members,

singleton objects, and the ability to override the type of the self reference;

extensibility through libraries (rather than adding to the language itself), made possible in large part by

the fact that all values are objects, and all operators are methods;

full support for functional programming and closures: besides methods, functions may be defined as

values of function types;

utility also as a scripting language.

Scala

Compilation of Scala source files produces regular Java .class files, that may be packaged as regular .jar

files. However,

the Scala library .jar file is required in the classpath, for execution;

applications require their entry point to be a def main(args: Array[String]) {…}, residing in a

singleton object.

No significant changes were therefore required in order to switch from developing JMaCS to developing

MaCS. Note, however, that special measures will be required when developing downloadable apps, if the

entire Scala library is not to be downloaded as well.

Developing in Scala

Use of Scala idioms
As previously mentioned, it was the part of the JMaCS API to do with defining PDs, namely the org.jmacs.pd

package, that was most in need of benefiting from being rewritten in Scala, and this indeed turned out to be

where most opportunities to employ Scala idioms arose. The design pattern found to be of greatest value

here is one (based on the subject/observer case study of [5]) which will be called the type-safe singleton,

where inner classes referring to abstract type-members are exposed via a singleton object. This was

employed as follows:

all elements of the PD are represented by inner classes/traits of an abstract generic container class,

_AnyPd, also having various abstract type-members to which the inner classes/traits may refer;

_AnyPd has various abstract subclasses representing six PD variants (according on whether or not they

produce status or define constants), some of which supply or else 'fine tune' the required type members;

PD developers then define a singleton object (conventionally called pd, in a package whose name

corresponds to that of the PD) which extends the desired _AnyPd variant; being concrete, it is required

to 'fill-in' the remaining abstract type-members, which are the traits (representing such things as the

driver) which define that particular PD's API;

developers may then define any further classes constituting the PD's definition (such as its monitor GUI)

in a fully type-safe way, by extending the corresponding inner class of _AnyPd, which is now accessible

via the singleton object, pd.

JMaCS vs MaCS: PD API definition

next to the Scala code

necessary in the case of

MaCS. As can be seen, the

weaknesses pointed out

earlier have been

eliminated in the MaCS

case.

Since the API includes

status, and there are

commands (defined

We now present a PD definition for a steerable antenna (such as the one at the ESR), having only a very

minimal API. Shown below is the Java code necessary to define the PD's API in the case of JMaCS (left),

elsewhere in the MaCS case), the PD definition should also

include classes representing a monitor GUI, control-panel

GUI, and command interpreter...

JMaCS vs MaCS: PD command-interpreter
Shown below, side by side as before, are the two versions of the PD's command interpreter. The main

difference to note here is that, by extending pd.CmdInterpreter, only the MaCS version (right) is fully

type-safe, whereas the JMaCS one is required to cast the driver (from the tag type to the type defined by

the PD). Note also that the commands are defined in the same file in the MaCS case, which is not possible

in the JMaCS

one. This

example also

illustrates how

Scala's pattern-

matching can

provide a

cleaner

alternative to

conditionals.

JMaCS vs MaCS: PD implementation, deployment
To complete the PD definition, it may be similarly shown how, by extending pd.MonitorGui, only the

MaCS version of the monitor GUI is fully type-safe. Note that full type-safety with respect to the PD's API is

not an issue in the case of the control-panel GUI, since this may not reference the driver directly, but only

the commands.

In the present case, it is appropriate not to include an implementation of the PD's API as part of the PD

definition, so as not to limit its reusability. To provide one in this case requires a status factory, which once

again, by extending pd.StatusFactory, may only be written in a fully type-safe way in the MaCS case.

The listings below show JMaCS and MaCS versions of the code required to create a DI-client object, given

a concrete implementation of our example PD. Here again, only the MaCS version (bottom) is fully type-

safe.

MaCS vs JMaCS: PD programs - 1
Shown here is the JMaCS version of an example program for our example PD, having properties that may

be configured so as to point

the antenna in a sequence

of directions.

JMaCS vs MaCS: PD programs - 2
Shown here is the MaCS version of the same

program. Once again, only this one is fully type-safe,

while also being somewhat more concise.

Note that the @BeanProperty annotation tells the

compiler to add corresponding Java-style accessor

methods, to allow property configuration using existing

Java tools.

Note also that there is no terminate() in the MaCS

case, since an empty implementation is already

supplied by the Program trait—the corresponding

IProgram Java interface in the JMaCS case is not

allowed to do this.

References
[1] Rob Dickens, JMaCS: a Java monitoring and control system, Proc. of SPIE Vol. 7019, 7019W (2008).

[2] Martin Odersky, Lex Spoon, Bill Venners, Programming in Scala (2008).

[3] Rob Dickens, Secure remote monitoring-and-control for the EISCAT Svalbard Radar: a case study in Java
object-oriented design, 9th International EISCAT Workshop talk (Aug 1999).

[4] Rob Dickens, Monitoring and control of the 'radar.eiscat.esr' device, 10th International EISCAT Workshop
poster (Jul 2001).

[5] Martin Odersky and Matthias Zenger, Scalable Component Abstractions, OOPSLA (Oct 2005).

Conclusions
The Lafros MaCS software, written in Scala, has been presented and compared with its predecessor,

JMaCS, written in Java.

It has been shown that PD API definitions are cleaner and more concise when written to the MaCS API, in

Scala, than when written to the JMaCS one, in Java.

Furthermore, it has also been shown that the remainder of each PD definition, together with PD

implementations, PD deployment code, and PD programs, may be written in a way that is fully type-safe

with respect to the PD's API, in the MaCS/Scala case, that was not possible in the JMaCS/Java one.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

