
Lafros GUI-App: a monitoring and control-
oriented Scala-Swing application framework

Rob Dickens
Latterfrosken Software Development Limited, 32 Bradford St, Walsall, West Midlands, UK, WS1 3QA

rob.dickens@lafros.com

Abstract
Lafros GUI-App offers a lightweight means of simplifying
the task of writing monitoring and control-oriented desktop
user interfaces in Scala. It is a complete rewrite of an existing
Java framework, JUICe.app, in Scala. The principal facili-
ties provided are, a means to run the same code as either an
application or applet, an environment for executing abstract
commands, and a specialised label component for display-
ing values to be monitored. After first relating the software’s
development history, the paper describes the facilities pro-
vided and how to use them. The benefits of using Scala and
GUI-App versus Java and JUICe.app are then considered, in-
cluding being able to write code which is more concise and
declarative in style. Finally, an issue arising from the intro-
duction of dependencies on the Scala libraries is addressed
to conclude.

Keywords Scala, application framework, GUI, monitoring
and control

1. Introduction
Lafros GUI-App1 is a lightweight application-framework
based on Scala-Swing, intended to simplify the task of writ-
ing monitoring and control-oriented user interfaces for the
desktop. It depends on two sub-frameworks, GUI-Cmds and
GUI-Alerts, as shown in Figure 1, and these will also be de-
scribed here. All three are complete rewrites of some cor-
responding Java/Java-Swing libraries known as JUICe2, in
Scala.

1 http://lafros.com/gui
2 acronym for Java User-Interface Client - see http://lafros.com/

juice

This paper was first presented as a tech talk at Scala Days 2010 on April 16 at EPFL,
Lausanne.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright c© 2010 Latterfrosken Software Development Limited

GUI-App - GUI-Cmds � GUI-Alerts
6

Figure 1. GUI-App depends on two sub-frameworks. The
dashed arrow indicates that the GUI-Alerts .jar file need
only be included in the classpath if it is required by the app
itself.

After first giving a brief overview of how the software
came to be written, the main facilities which it provides
are then presented, using example code to illustrate. The
software is then compared with the Java version from which
it was derived, and finally, some conclusions drawn.

2. Development history
This software originates from a C++/Motif3 application
framework, MotifApp [1], written4 as part of the user-level
monitoring and control module [2] for a radar to be used
for studying the Earth’s ionosphere. This was based on the
similarly named framework described by Young [3, Chapter
6], and adapted for use with a GUI builder (X Designer).

MotifApp was later partially rewritten4 in Java as a feasi-
bility study [4], and the result used as the starting point for
the experimental Java monitoring and control software that
was developed4 for the same radar subsequently.

Development of this experimental software was later con-
tinued independently4, resulting in JMaCS [5] and JUICe.
Note that the former has already been rewritten in Scala, as
Lafros MaCS5 [6].

3. Deployment as application or applet
The main purpose of GUI-App itself is to provide a way
to write an app so that the same code may be deployed
either as an application (perhaps using Java Web Start6) or
as an applet (embedded in a browser window). All that is

3 X Window toolkit
4 by the author
5 http://lafros.com/macs
6 http://java.sun.com/developer/technicalArticles/

WebServices/JWS_2/JWS_White_Paper.pdf



required is that the app should include a singleton object,
conventionally called app, that extends ~.gui.app.App

7,
and implements the abstract init method:

object app extends App {

def init(context: Context) {...}

}

This may then be run as an application—it inherits the requi-
site main method—or else its (fully-qualified) name may be
given as the value of a parameter named App, of the supplied
~.gui.app.Applet:

<applet code="com.lafros.gui.app.Applet"

...

<param name="App" value="org.myorg.myapp.app">

</applet>

app inherits suitable default implementations of all the
other methods the framework uses: displayApplication,
start, stopApplet, restartApplet, terminate. All ex-
cept main will be called from a java.awt.EventQueue

dispatch thread.

4. GUI commands
4.1 Keeping the user informed
GUI-Cmds provides the ~.gui.cmds.Cmd trait, which is
simply an abstract function (i.e., having an abstract apply
method) that returns an optional feedback message:

val cmd = new Cmd {

def apply() = {

...

Some("useful thing done")

}

}

The above may also be written,

val cmd = Cmd {

...

Some("useful thing done")

}

The feedback message will be passed to the succeeded

method of any ~.gui.cmds.CmdsApp registered with ~.

gui.cmds.TheCmdsController.instance, and displayed
accordingly. In the case of a ~.gui.app.App, this will re-
sult in its being displayed using the ~.gui.app.MsgLine

assigned to context.msgLine by the init method.

4.2 Provision of common functionality
Various Cmd subtraits are also provided, to support com-
monly required variations in the method of execution. Thus,
a CheckFirstCmd prompts the user for confirmation, a
PwdProtectedCmd prompts for a password, and a SeqBgCmd

7 where ~ denotes com.lafros

is executed in the background. These may be extended in any
combination.

4.3 Robust environment
Any exception thrown by a Cmd’s apply method8 will be
caught, and passed to the failed method of the CmdsApp

instance mentioned above. Once again, this will result in a
message being displayed on a ~.gui.app.App’s message
line, this time optionally9 accompanied by an audible alert.

Where input must be validated, or where the effect of the
user interaction is generally less predictable (as in control
applications, especially over a network), having such a built-
in system for recovering from and reporting exceptional
conditions was found to be highly desirable.

4.4 Toggles
One further Cmd subtrait (that may also be used in combina-
tion with the others) is Tog.Cmd, which is for use where a
command represents a toggle. Implementations must supply
a ~.gui.cmds.Tog instance, whose state changes after—
and only after—the command has been executed success-
fully, i.e., after its apply method returns.

It is also possible to represent a toggle by combining two
non-Tog.Cmd commands, as shown in the following section.

4.5 Exer, Trig and Trig.Props

To benefit from the facilities described above, the com-
mands must be executed indirectly, via an appropriate ~.

gui.cmds.Exer, which may be instantiated and invoked as
follows:

val exer: Exer = Exer(cmd)

val togExer1: Tog.Exer = Exer(togCmd)

val togExer2: Tog.Exer = Exer(setCmd, resetCmd)

exer.executeCmd()

togExer1.executeCmd()

...

Note that, in contrast to a Cmd’s apply method, executeCmd
is guaranteed to return, immediately.

Rather than have to call executeCmd explicitly from one
of a scala.swing.AbstractButton’s reactions, a mix-
in, ~.gui.cmds.Trig, is provided, that allows a similar end
to be achieved simply by setting the acquired cmd or exer
property:

val but = new Button with Trig {

cmd = myCmd

}

The above automatically creates a corresponding Exer, and
assigns it to exer. Conversely, assigning a value to exer will
assign the corresponding Cmd to cmd.

8 or by any other method of any of the Cmd subtraits provided
9 user-configurable



There is also a cmdReaction property, that combines
command-like execution with scala.swing.Reactions.-
Reaction-like event-matching:

val but = new Button with Trig {

cmdReaction = {

case ActionEvent(_) =>

...

Some("useful thing done")

}

}

The above automatically creates a corresponding Cmd, and
assigns it to cmd (which in turn sets the exer property).

Mixing-in Trig also allows the AbstractButton’s
text property to be determined by the Exer (via the
exerToText property, of type Exer => String), includ-
ing updating it to reflect the state of the tog in the case of a
Tog.Exer. Note that a Trig mix-in is always required when
wishing to invoke a Tog.Exer using an AbstractButton

which indicates its selected state graphically, in order that
this should remain synchronised with the state of its tog.

Considering that scala.swing.Actions are somewhat
heavyweight, it was decided that their use with Exers (to
allow the properties of all associated Trigs to be set in one
place) should be optional.

Therefore, a concrete subclass of Action, called ~.gui.

cmds.Trig.Props, was introduced, whose apply method
does nothing. Thus, when required, an instance may be con-
figured appropriately, and made available along side the cor-
responding Exer, in order that it may be set as the Trig’s
action property (when setting its exer one). Note that it
will be treated as a special case, since setting the action

property would otherwise displace the exer one.

5. Monitor alerts
5.1 MonField

GUI-Alerts is based on a scala.swing.Label that has
been specialised for displaying status values, to be updated
periodically. Thus, the ~.gui.alerts.MonField has an
alert property, having the following possible values:

NoAlert normal background colour

NonIntrusive red background

Intrusive alternating background colour, accompanied by
alert sound

Acknowledged red background.

This may be set either explicitly, or via the valueToAlert

property (of type Any => Alert), which is used whenever
the value property (of type Any) is set, which in turn sets
the text to value.toString.

There is also a property, templateText, which, when
set to anything other than "", prevents the label from being

resized whenever its text is set; this is a desirable thing to
do when many fields are being updated.

5.2 Responding to alerts
Given that monitor windows may have large numbers of
fields, which may only be of interest when an alert is raised,
a container, ~.gui.alerts.TogPanel, is provided, that
allows them to be hidden away (by deselecting a check
box), in the manner of a folding editor. This will then open
automatically when any of its MonField children (which
must be registered, using listenTo) raise an alert, and then
close again afterwards.

The app as a whole may be notified when any alerts
are raised, via a mechanism corresponding to that used in
GUI-Cmds (involving a ~.gui.alerts.AlertsApp and ~.
gui.alerts.TheAlertsController.instance). In the
case of a ~.gui.app.App, this will result in an iconised
application being de-iconised.

6. Comparison with JUICe
6.1 Usage
Scala’s support for properties, as fully utilised by the Scala-
Swing API, makes possible a more declarative style of pro-
gramming, which is well suited to the task of defining GUIs:

val a = new A {

b = new B {

c = new C {

...

}

}

}

This may be contrasted with the more precedural style af-
forded by Java’s accessor methods:

C c = new C();

B b = new B();

b.setC(c);

A a = new A();

a.setB(b);

Since the GUI-App API also fully utilises properties, the
resulting Scala code is much clearer and concise than the
corresponding Java code written to the JUICe.app one.

Using Scala traits in GUI-Cmd, as opposed to the Java
interfaces of JUICe.cmds, allows default method implemen-
tations to be supplied, which simplifies the task of extending
the various Cmd subtraits. Also, Scala’s Option provides a
more satisfactory alternative to returning null when a Cmd

is to have no feedback message.
Finally, the app needs no longer supply the main method

(required in order for it to be run as an application), since
Scala makes it possible to arrange for a suitable one to be
inherited.



6.2 Framework implementation
Rather than have to provide a corresponding class for each
AbstractButton that may be used to trigger command ex-
ecution, as was required in JUICe.cmds, GUI-Cmds needed
only provide the single AbstractButton mix-in, Trig.

Scala’s Actors were used for implementing support for
SeqBgCmd, which requires the use of a background thread.
No synchronized blocks were required, resulting in code
which is straight forward to reason about, as compared with
the corresponding code in JUICe.cmds. Note that this sup-
port no longer includes a built-in means of interrupting the
background thread, which could not always be relied upon;
therefore, it is now up to the SeqBgCmd implementation to
ensure that it does not block indefinitely.

6.3 Deployment
The price to pay for the above advantages is a dependency on
the Scala and Scala-Swing .jar files. This presents a prob-
lem for GUI apps, since they are likely to be downloaded
over the network, and these files may well be significantly
larger than the app itself. The solution adopted has been to
extract from the above dependencies only those .class files
which are actually needed by the app (and add them to the
.jar file containing app). This may be achieved with the
help of a utility such as ProGuard10, and a suitable Maven
plug-in11 was written.

7. Conclusion
The Lafros GUI-App application framework and associated
sub-frameworks have been presented, and it has been shown
how they may be used to simplify writing monitoring and
control-oriented user interfaces in Scala. They have also
been compared with their Java/Java-Swing predecessors,
where it was shown how Scala’s support for properties, as
fully utilised by both Scala-Swing and GUI-App itself, al-
lows code to be written in a more declarative style, that is
much clearer and concise than was possible before.

On the other hand, using GUI-App encumbers the app
with dependencies on the sizable Scala and Scala-Swing
.jar files. This may be addressed by extracting from them
only those classes which are actually required.

References
[1] R. Dickens. MotifApp Guide, Documentation prepared for Ra-

dio and Space Plasma Group, Dept. of Physics and Astronomy,
Leicester University (Nov, 1997).

[2] R. Dickens. The UK User Monitoring and Control (UMC)
module for the ESR, Documentation prepared for Radio and
Space Plasma Group, Dept. of Physics and Astronomy, Leicester
University (Nov, 1997).

[3] D.A. Young. Object-Oriented Programming with C++ and
OSF/Motif, 2nd ed., Prentice Hall (1995).

10 http://proguard.sourceforge.net/
11 http://lafros.com/maven/plugins/proguard

[4] R. Dickens. On the advisability of adopting Java for develop-
ment in the future, Report prepared for EISCAT group, RAL,
UK (Apr, 1998).

[5] R. Dickens. JMaCS: a Java monitoring and control system,
Proc. of SPIE Vol. 7019, 7019W (2008).

[6] R. Dickens. Lafros MaCS: an experimental Scala monitoring
and control API, 14th International EISCAT Workshop poster
(Aug, 2009).


